Proof of Two Dimensional Jacobian

نویسنده

  • Yucai Su
چکیده

We give a proof of the two dimensional Jacobian conjecture. We also prove that if (F, G) is a Jacobian pair with deg y F ≥ 1, then F is a monic polynomial of y up to a scalar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detailed Proof of Two Dimensional Jacobian Conjecture

We give a full proof of the two dimensional Jacobian conjecture.

متن کامل

Proof of Two Dimensional

We give a proof of the two dimensional Jacobian conjecture. We also prove that if (F, G) is a Jacobian pair with deg y F ≥ 1, then F is a monic polynomial of y up to a scalar.

متن کامل

Proof of Two Dimensional Jacobian Conjecture 1

We give a full proof of the two dimensional Jacobian conjecture. We also give an algorithm to compute the inverse map of a polynomial map.

متن کامل

The Jacobian Conjecture Is Stably Equivalent to the Dixmier Conjecture

The paper is devoted to the proof of equivalence of Jacobian and Dixmier conjectures. We show that 2n-dimensional Jacobian conjecture implies Dixmier conjecture for Wn. The proof uses “antiquantization”: positive characteristics and Poisson brackets on the center of Weyl algebra in characteristic p. 2000 Math. Subj. Class. 16S32, 16S80, 14R15.

متن کامل

Stable Tameness of Two-Dimensional Polynomial Automorphisms Over a Dedekind Domain

In this paper it is established that all two-dimensional polynomial automorphisms over a Dedekind Q-algebra are stably tame; in fact, they become tame with the addition of three more dimensions. A key element in the proof is this additional new theorem: Over an Artinian Q-algebra all two-dimensional polynomial automorphisms having Jacobian determinant one are tame.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006